
An embedded language for simulating and

visualizing particle systems

Marcus Lindblom

May 12, 2003



Abstract

English

Particle systems are becoming a common sight in today’s video games as they
are used for a variety of graphical effects, such as fire, smoke etc. Creating
and maintaining them while retaining optimal performance has, however, got-
ten harder as the diversity and flexibility of the latest programmable graphics
processors have increased tremendously. A single particle system may therefore
need several implementations and these are often written for speed rather than
clarity.

This report presents an embedded functional language that attempts to solve
these problems, together with an optimizing compiler that generates C++-code
(and is prepared to generate graphics processor code). The language unifies
the particle system concepts of emitters and particles into objects which allow
for more complex and interesting systems. The compiler outputs a C++-class
which serves as a run-time system and controls object creation, simulation,
visualization and removal. Objects can be created and affected by external
input which is provided by the frameworks in which the system is run.

Svenska

Partikelsystem blir en allt vanligare syn i dagens videospel eftersom de används
till en stor mängd grafiska effekter som eld, rök och mycket annat. Att skapa och
använda dem har däremot blivit sv̊arare, eftersom de senaste programmerbara
grafikprocessorerna har ökat väldigt i flexibiltet och mångfald. Ett partikelsys-
tem kan därför behöva flera implementationer och dessa är oftast skrivna med
prestanda istället för tydlighet i åtanke.

Den här rapporten presenterar ett inbäddat funktionellt spr̊ak som försöker
lösa dessa problem samt en optimerande kompilator som genererar C++-kod
(och är förberedd för att generera grafikprocessorkod). Spr̊aket förenar kon-
cepten emitterare och partikel till objekt som möjliggör mer komplexa och in-
tressanta system. Kompilatorn ger som utdata en C++-klass vilken inneh̊aller
ett simuleringssystem för att skapa, simulera, visualisera och ta bort objekt.
Objekt kan även skapas och p̊averkas externt via det ramverk som systemet
används i.
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Chapter 1

Introduction

In this chapter, we will give the background for the project, provide our def-
inition of particle systems as they will be approached. We discuss our target
language and architecture and state the problem we are adressing. We also
discuss and motivate our choice of language and finally outline the structure of
the report.

1.1 Background

The idea for developing a separate language and compiler came to life during the
development of Reaper [1], a 3d action game developed in C++ and OpenGL
(an open cross-platform graphics API). It features a number of different particle
systems for explosions, missile trails, etc. Many of these are quite similar but
not similiar enough to lend themselves to reuse without sacrificing performance.
These small but numerous systems eventually became too hard to maintain, so
a better solution was needed.

There was also a desire to use the programmable processing capabilities of
emerging graphics cards and move as much of the calculations from the CPU,
thus freeing it for more complex tasks such as AI, physics, etc.. Doing this while
still maintaining backwards compability essentially required writing each system
twice. Coupled with the diversity of ways for fast geometry transfer at that
time, the potential combinatorial explosion of implementations was a sign that
automation in some form was necessary. (Reaper was developed mostly during
2001, at which time there was no vendor-independent way of sending geometry
to the card fast (i.e. via asyncrounous DMA over the AGP-bus). Recently,
OpenGL has been extended with mechanism called vertex buffer objects [18] to
facilitate this.)

A small compiler was written as the exam project for the course in Advanced
Functional Programming at Chalmers and the results where quite promising.
There where more than enough ideas for further development to allow the
project to continue as a thesis work.
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1.2 A brief description of particle systems

Particle systems are mainly associated with three different areas in computing;
scientific calculations, movie special effects and real-time computer games. Our
system targets the latter of these and strives to improve on ease of creation,
maintainability and performance, all which are of equal importance.

The definition of particle systems varies from within computer graphics, but
is usually assumed to be composed of a set of emitters that produce new par-
ticles and the created particles. We will only concern ourselves with particle
systems for visual display, and specifically not those used for simulation com-
plex physical behaviours were the particles can interact with each other. This
is the norm for particle systems used in real-time computer graphics today.

A particle usually has the following properties:

• A set of initial values.

• (possibly) Some state that is updated iteratively.

• A behaviour that is shared with all other particles in the system and can
be affected by external variables, such as wind direction.

• Some expression signifying when the particle is to be removed.

• A visualization, defining how the particle is to be displayed.

Similarly, an emitter:

• spawns new particles at a specified rate

• creates particles with different initial values

• (possibly) varies its behaviour over time

The independent and ’sameness’ properties of particles are important since it
allows us to process large number of particles in batches, exploiting the pipelin-
ing and parallellism commonly used in todays computing architectures. As we
shall see later, our language extends this model to a hierachy of objects, that
act both as particles and emitters.

1.3 Target platform & languages

Our main target is gaming platforms and especially those used by game devel-
opers. A large majority of games today are written in C or C++ and most of
the platforms they run on have some kind of programmable graphics processor.
C++ is a feasible target language, because it is human readable, which allows
for faster compiler debugging, easy comparision of output with production code
as well as hand-optimization after compilation. It is also high-level enough so
that our compiler can defer common tasks such as register allocation or stack
size counting to another compiler.

The programmable graphics processors (henceforth referred to as GPUs) are
accessible either by assembly languages or more high-level shading languages
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(HLSLs) that all basically are modified C. DirectX 9.0, the latest version of Mi-
crosoft’s proprietary graphics API for games, also has a HLSL and the OpenGL
ARB (Architecture Review Board, a commitee of hardware and software man-
ufacturers that control the evolution of new versions of OpenGL) is at the time
of this writing working on a version suited to that API.

However, there is one language that works both these APIs, namely Cg (C for
Graphics [2]) developed by NVIDIA (a major manufacturer of high-performance
graphics chipsets). It is also supported by some of the major content authoring
packages and have existed in the market for some time now. The platform
independence and the relative stability makes it our preffered choice. However,
the similiarity between all these HLSLs will probably make retargeting a rather
smooth procedure, since the hardware running beneath the abstraction layer
does not change.

The available feature set naturally differs between different generations of
GPUs (the Cg language offers different profiles for this), much more so than that
of CPUs, so a specific target is necessary here too. At the start of this thesis
project, the state-of-the-art GPU available for the PC was NVIDIA’s GeForce4,
which has the ability to execute small (128 instructions) custom programs for
each vertex. It is not possible to branch, loop or call functions, and the output
is always sent into the rasterization unit, yielding no way of regaining the full
precision of the output (The writeable part of the frame buffer is four 8-bit
integers). However, our chosen GPU is very similiar to the one found in the
X-Box (A game console manufactured by Microsoft and powered by a modified
version of NVIDIA’s GeForce 3 GPU, which has a single programmable pipe-
line, vs. two on the GeForce 4) and thus our compiler target is not as restricted
as it first may seem.

Since the start, new GPU’s have emerged from multiple vendors that offers
increased computational power and flexibility that lifts some restrictions that
our compiler works with. More discussion on this can be found in chapter 7.

1.4 Problem statement

Language We want a language that makes it easy to design complex particle
systems with a maximum of versatility and expressiveness. It should also allow
as much reuse as possible. Ideally, a developer should be able to build a library
of common particles, emitters and other objects that can be composed into new
creations with very few lines of code.

The language should focus on clarity and ease-of-use, rather than potential
performance and opportunities for the user to perform heavvy optimization.
We will leave those tasks for the compiler and strive to make our design as
user-friendly as possible.

Compiler The output from the compiler should be equal or better to that of
a human programmer, but not necessarily one that is an expert in optimization.
Since the output is in plain and readable C++/Cg, there is always an option
for optimization by the developer. The biggest challenge for the compiler will
probably be to take maximum advantage of the GPU. This means separating
the expression depending on their semantic requirements.
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Since we have full control of the generated code, we do not need to build
any reusable structures in C++ and thus have the opportunity to produce code
that is optimal in each case.

1.5 Language choice

Here we discuss a few approaches on how to design particle system languages,
in order to motivate our final choice, which is a language embedded in Haskell.
How well this approached worked is discussed in the concluding remarks, chapter
6.

To embed or not to embed

When designing a domain-specific language there are, strictly speaking, two
different ways of solving the problem. The first is a self-contained language,
with syntax and type-system. The second is to embed it in another language,
meaning that we define our constructs in terms of functions or objects in the
host language. Writing programs in our language essentially means writing
a program in the host language that, in the end, uses only our constructs.
This approach means that our language inherits what tools and features that
language provide, e.g. syntax, parsers, static type-checking, debuggers, etc.
Thus, one needs to consider each of these properties carefully.

Another thing to consider is the compilation target. Having the source lan-
guage embedded in the target language essentially boils down to writing an API,
which has a few advantages over a separate compiled language. Compilation is
a one-step process and debugging of the source language is considerably easier
as it can be inspected together with the running environment (in our case, the
game engine).

Embedding in C++ One approach might be to embed in C++, since that is
one of our target languages. In our case, as we are targeting both C++ and Cg,
we need some form of compiler to bridge the gap to Cg, even if we did embed
our language in C++. Since the basic operators are overloadable, it is possible
to build expression trees directly in C++ (while still getting acceptable syntax)
and thus write a separate compiler that transform these to partial C++/Cg and
then compile again.

As C++ is a widely used language (and the C-inherited syntax even more
so) specifically amongst game developers but also in the software community
at large, using it means that our tool would be almost immediately applicable
to many projects and useful for many developers. Still, the language has to be
powerful and concise enough to be considered a valid choice.

Had we not wanted Cg-code, one approach could’ve been to build a set
of smart, lazy-evaluated template functions that perform as much optimiza-
tion as possible during compilation. This approach is called template meta-
programming [4] and would give good local optimization with a minimum of
work, but we still to rely on the C++-compiler for global optimization, which
is quite limited compared to what we can do with a separate compiler due to
our better knowledge of the problem.
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Embedding in Haskell A popular host language for domain-specific em-
bedded languages is Haskell and there are numerous examples of successful lan-
guages that have used this approach (from music [5], animation [11], images [12]
to hardware design [14] and robot control [6]. Details for some of these are given
in chapter 5.2. Many of these are accompanied with compilers or interpreters
also written in Haskell, and some of them match quite closely what we are trying
to achieve.

Haskell’s powerful features, such as type-inference, neat indent-sensitive syn-
tax, first class functions and a rather powerful type-systems makes many of these
specialized language appear very different and suprisingly well adapted to their
problem, compared to their host language.

Self-contained language Designing a completely new language means that
apart from just deciding semantics and implementing a compiler for that, one
also has to decide on syntax and types, and implement the corresponding parser
and type-checker. These are not trivial design decisions so one should be clear
about what problem the language should attempt to solve and what sort of
programs one wants to write in it. Also, more stages and transformations means
that changes made to the language result in increased work spent updating the
compiler.

Our choice

As we have previous experience in implementing compilers and some smaller
embedded languages in Haskell, as well as developing larger C++ applications,
C++ does not appear as suitable for rapid compiler development. Altough there
are several compilers written largely in C or C++, such as the GNU Compiler
Collection [7], they are rather large and unwieldy pieces of software, and often
use macros or other type-unsafe means to make development feasible. On the
other hand, Haskell has many nice features, especially pattern-matching, which
makes it especially suited for compiler work, which is our choice as compiler
development language.

The decision on embedding or not falls on the fact that we will try to write
something which has little precedents, namely a domain-specific language for
particle systems. Thus one can expect that the language will change during
development as new opportunities or directions surface. Having an embedded
language allows us to make changes without significant rework of the compiler.
We also retain the option of developing a separate language should we feel that
embedding hinders our design, once it is more clear.

1.6 Overview

Now that we know what we want to adress and the basic approach, we will spend
the of the report on how we solved the problems. Our language is outlined in the
tutorial in chapter 2, which explains the basic concepts of building expressions
and defining particle systems.

Chapter 3 gives the syntatic constructs used in our language, followed by
some more advanced examples and finally the formal semantics for the inter-
esting (non-obvious) subset of the language. Following this, chapter 4 describes
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our compiler, explaining our approach to compilation. There are also sections
on the separate passes, how they relate and outlines on some of the algorithms
used.

After describing our work, chapter 5 compares it to other attempts at defin-
ing and using particle systems, as well as looking at related embedded functional
languages. We sum up our achievements in chapter 6 and the final chapter 7
looks at some possible directions for the future.



Chapter 2

Tutorial

This tutorial aims to introduce the user to the particle language and the basic
concepts necessary to create simple particle systems. A more rigourous descrip-
tion of the language, together with more examples and semantic defintions is
given in chapter 3. It is assumed that the reader is somewhat familiar with
functional languages.

2.1 Introduction

Before we look at some concrete code examples, we need to clarify the basic
building blocks of our particle systems. In our language, we differ between
objects, commands and expressions, all of which are necessary to create a mean-
ingful program.

expression An expression is a mathematical formula, such as 2x + sin α. Our
expressions can contain if-else conditionals, integration andderivation, lo-
cal state, references to external data and non-determism through random
values.

command Commands are statements that make things happen, this can either
be to display a particle on the screen, create new objects or remove the
current object from the system.

object We define an object to be a set of expression and commands that are
used for simulation. An object usually computes some values such as
position and color, and then act on these to perform certain commands.

A particle system can have any number of different objects, as well as many
objects of the same type. An object can have expressions that depend on its
parent, i.e the object that created it, (or any of its grand-parents), but not on
its siblings or children.

2.2 Types and operators

In the following examples, we will give the types for the non-obvious new con-
structs used. Therefore, a few words about the type we use are in order.

11
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Our main types are expressions and commands. Expressions can have four
different types, Boolean, Scalar, Vector and Color. Vector and Color types are
composites and have scalar (i.e. float point values) members, three and four
respectively. Vector have the synonym Point, and these two are completely
interchangable. Their use simply makes things easier to understand.

The type class NumE denotes numerical expressions, which is Scalar, Vec-
tor and Color. Also, both commands and expressions are of type Exp *, but
with different types for *. (There are also another type class used to facilitate
numerical operations between scalar, vector and color values, NOp, whose im-
plementation is given in appendix A.3. We will give somewhat simplified types
in this tutorial that do not use this type, as it would clutter the definitions too
much.)

We have also created our own operators (since Haskell’s own are typed in
ways that does not fit our cause everywhere) but they are merely the standard
operators with an extra character appended (where necessary, for some cases
the usual operators work as expected).

• An asterix * as prefix to the comparision operators.

• A dot . to prefix numerical operators. Due to the type system, operations
where one or two operands are literals (e.g. a float literal such as 3.5) must
use the standard Haskell operator, without prefix.

• A capital e E as postfix to standard functions (such as ifE).

2.3 Particles

For our first example, we want to a particle object that is affected only by
gravity, starting at origo with a initial upwards velocity. A program which gives
us this would then have the following look:

obj :: (Scalar -> Cmd) -> Cmd
point :: Point -> Color -> Scalar -> Cmd
kill :: Boolean -> Cmd
integrate :: (NumE a) => Scalar -> Exp a -> Exp a
(<+>) :: Cmd -> Cmd -> Cmd
vec3 :: (Scalar, Scalar, Scalar) -> Vector
vec4 :: (Scalar, Scalar, Scalar, Scalar) -> Color
white = vec4 (1,1,1,1)

--

myparticle =
obj $ \t ->
let pos = origo .+ integrate t vel

vel = vec3 (0,10,0) .+ integrate t acc
acc = vec3 (0,-9.82,0)

in point pos white 1 <+> kill (t *> 10)

Here, the particle has a white color and a size of 1. The particle will be
removed from the system after 10 seconds.
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The function obj takes as argument a function from time to a command, so
that we can evaluate the expressions a certain times, thus creating an animation
over time. The execution of an object command results in the creation of a new
object and a subsequent insertion into the system.

<+> is an operator that takes two commands and combines them. kill
removes the object if the expression evaluates to true. integrate performs
integration of an expression over time.

Had we want the pooint to fade from white to black over a period of ten
seconds, we could have used the function lerp (type and example given below),
which performs linear interpolation between two values.

lerp :: (NumE a) => Scalar -> Exp a -> Exp a -> Exp a

point pos (lerp (t/10) white black) 1

2.4 External variables

If we want to have our particles affected by some external force, which is con-
trolled by the outside system (such as the wind direction in a game, something
that probably depends on which world or where in a specific world we are), we
can define variables to be from the environment:

envVector :: String -> Vector
-- similar for other types

myparticle =
let wind = envVector "wind_direction"

pos = origin .+ integrate vel
vel = vec3 (0,10,0) .+ integrate acc
acc = vec3 (0,-9.82,0) .+ wind .- vel

in point pos red 1

envVector allows us to read an external variable and use it in our definition
of the particle behaviour. However, this is not all. Our definition now has a
cycle in it! Velocity depends on acceleration which depends on velocity. This
is not a problem, since the cycle goes through an integration. As our compiler
does not have a symbolic ODE-solver, we need to break this cycle in another
way. We do this by switching to numeric integration and using the velocity at
the previous update when calculating the acceleration for this frame. As we
integrate from t = 0 and forwards, any evaluation at t ≤ 0 yields zero, which is
what we use as our initial state.

2.5 Randomization

Most of the time, we want each of our particles to look a bit different in order
to give the system a more “natural” appearance, so what if we added a bit of
randomness to the initial velocity?

rand :: Rand a => (a -> Cmd) -> Cmd
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nrand :: Rand a => (a -> Cmd) -> Cmd
snapshot :: Exp a -> Exp a

myparticle =
obj $ \t ->
nrand $ \(x,z) ->
rand $ \c ->
let pos = origo .+ integrate t vel

vel = snapshot $ vec3 (x,10,z)
col = lerp c red blue

in point pos col 1

rand and nrand both takes a function from a random-type to a command,
and returns a command. A random type could be any of a float, a tuple of floats,
a point, a vector or a color. The implementation of the Rand class is given in
appendix A.2. The difference between the two functions is that rand gives
random values in the [0..1] range while nrand uses the [−1..1] range. snapshot
evalutes the expression once, when the particle is created. Now our particle
has a initial random velocity and is flickering (rather wildly, one might add) in
various shades between red and blue.

2.6 Emitters

To define an emitter that emits any object, at a rate proportional to sin t, we
would write is as a function which takes the object to emit as an argument, and
returns an emitter object.

emitter :: Scalar -> Scalar -> Cmd -> Cmd

myemitter p =
obj $ \t -> emitter (50 + 50 * sin t) 1 False p

The first argument to the emitter is the rate, i.e. how many emission events
per second there should be. The second value is the number of objects per
emission event1. This emitter will be creating new objects with a varying rate,
one at a time but one hundred per second at maximum.

2.7 A complete system

Now we will link together our emitter with our previous particle, and make an
object that emits two streams of particles.

rotatey :: Vector -> Scalar -> Vector

origin = vec3 (0,0,0)

1In the current version, only rate is used. The second value is completely ignored and
treated as fixed to 1 (one). Future versions will use this and also make it possible to differ
between particles created at one specific event.
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Figure 2.1: Rotating emitters

part v =
obj $ \t ->
let wind = envVector "wind_direction"

pos = origin .+ integrate t vel
vel = snapshot v .+ integrate t acc
acc = vec3 (0,-9.82,0) .+ wind .- vel

in point pos red 1 <+> kill (y pos <* 0)

emit a =
obj $ \t ->
nrand $ \(x,z) ->
let vel = rotatey (vec3 (x+3,10,z)) ((t+a*2*pi)/10)
in emit 100 1 (part vel)

mysystem = emit 0 <+> emit pi

There, our very own particle system. Most of it we recognize from earlier
examples. The two emitters will rotate with a speed of one revolution per 10
seconds and the particles will die once they fall below the ground level.

A picture of this system in action can be found in figure 2.1.

2.8 Output to C++ code

Once the system has been defined, compiling the system to a C++ class is
straightforward.
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cppout :: Cmd -> String -> IO ()

> cppout mysystem "particle_test"

This will write two files to the disk: particle test.cpp and particle test.h.
The header file will look something like this:

#include <hspark.h> /* definition of vector/color/etc */

namespace hspark {

class particle_test
{
public:
particle_test();

void init();
void update(float time);
void draw();

void set_wind_direction(vec3 &value);
vec3& get_wind_direction() const;

...

private:
...

};

} // end namespace hspark

So, in our application we create a gl-window, create an instance of the class,
set the wind-direction (intially zero), call init() to create the top-level objects
and start updating/drawing to see your particles be born, animate and die.

There are also functions for inspect the particle system in a limited manner,
to see how many particles are alive and dead, to ease debugging and tuning.



Chapter 3

The language

This chapter strives to explain our language. We begin by giving an overview
of the syntax and the constructs we use to build particle systems. Some larger
examples are also given and the chapter ends with formal semantics for a (con-
ceptually equivalent) subset of our language.

This chapter assumes that the reader is familiar with functional languages
and Haskell in particular. A detailed report on the entire Haskell language can
be found here [3]. We use a few extensions to the Haskell language, mainly
multi-parameter type classes and functional dependencies, both of which are
implemented in GHC and Hugs, two of the most widely used Haskell compilers
and interpreters.

3.1 Syntax

Here we describe the most important syntactic constructs in our language. This
section is terse in some sections, as the basic concepts are outlined in the tutorial
in chapter 2. Detailed description on the execution is given in the section on
semantics 3.3. As with the tutorial (where the types are presented in more
detail), the types of the functions are simplified versions of those used in the
actual implementation, to avoid clutter.

3.1.1 Objects and commands

Object creation and destruction are handled with the following primitives:

obj :: (Scalar -> Cmd) -> Cmd
kill :: Boolean -> Cmd
(<+>) :: Cmd -> Cmd -> Cmd
point :: Point -> Color -> Scalar -> Cmd
emitter :: Scalar -> Scalar -> Cmd -> Cmd

obj takes a function from time to command. Time roughly corresponds to
the object’s age (usually in seconds, but depends on the external frame-
work’s concept of time). Note that we cannot use a single time-variable
in the entire system, since this would make it impossible to differ between

17
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parent time and child time in certain expressions (e.g. integrations and
derivations).

kill removes the current object from the system if the expression evaluates to
true

<+> composes two commands. Their ordering is not significant and may be
changed by the compiler.

point displays a point at the given position, with a color and a size1.

emitter executes the commands at the given rate (first argument, event per
second) with the given quantity (executions per event)2.

3.1.2 Integration/derivation

We can integrate and derive values over time, using the following constructs:

integrate :: (NumE a) => Scalar -> Exp a -> Exp a
derive :: (NumE a) => Scalar -> Exp a -> Exp a

The scalar must be a expression containing a time-variable for some object.
It can be scaled, but results are undefined if a decreasing or negative value is
entered.

3.1.3 State

In order to compute complex behaviours, we often want to track some state.
This can be because we using a complex expression or simply because we want
to know when some event has occured that we have no control over (such as
randomization or external input).

state :: (Exp s -> (Exp a, Exp s)) -> Exp s -> Exp a
state2 :: (Exp s -> Exp a) -> Exp a -> Exp a
prev :: Exp a -> Exp a

prev e = state (\s -> (s,e)) e

state takes a function from state to output and new state, and an initial value.

state2 is a convenience function when the output and the new state is equal.
This is used to implement numerical integration and derivation, amongst
other things.

prev function gives the value of the expression from the previous update.

Using prev, we can define a simple derivation approximation:

nderive e t = (e - prev e) / (t - prev t)

1Point primitives cannot be individually sized on current hardware. Currently, the compiler
ignores the size value and uses a fixed size of two. This will be adressed in the future, allowing
a set of points emitted by the same command to have the same size.

2Currently, the quantity value is ignored by the compiler
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3.1.4 Random values

In order to provide random values into our systems, thus making them appear
more realistic, we need to ensure that the same random value is used everywhere
in the expression. Otherwise, a rotation matrix constructed from a random angle
might turn out completely incorrect.

We solve this by forcing the user to provide a function that takes a value
(which will be random) and produces an expression. We also provide two ver-
sions of our random construct, depending on the range of the random variable:

rand, nrand :: Rand a => (a -> Cmd) -> Cmd

The first function works with any of our basic types and gives values of
True/False or uniformly distributed in the range [0..1]. The second is not mean-
ingful to booleans and gives values in the range [0..− 1]. For vector types, each
component is given a separate random value.

Several examples of random expressions are given in the tutorial, chapter 2.

3.1.5 Recursive lets

We do not have recursive lets (letrecs) as one would normally expect, since
we do not have lazy evaluation in our targe language. Rather, we use it as
syntactical sugar for state expressions were possible. One needs to be aware of
the implications of our transformation here, as the semantics are not altogether
obvious.

The reason for having letrecs is that they allow us to express differential
equations in an easy manner. One would like to write something like to express
the position in terms of starting position and velocity, where the latter depends
on the position.

i = let p = 3 + integrate v
v = 2 - p

in p

This is transformed by the compiler into an expression using the previous
value, which corresponds to Euler-step approximation for integration.

e = state (\p’ ->
let p = 3 + integrate v

v = 2 - p’
in (p,p)) 3

This tranformation is possible as long as the cycle passes through an ex-
pression that has a well defined value at t = 0, such as integration. If not, one
can give any expression an explicit start value using the following predefined
function:

start e i = state2 (\_ -> e) i

Note that no actual state will be held here, since the state variable does
not occur in the result of the expression, the state-expression can safely be
optimized into the original expression e once the initial value has been used in
the transformation described above.



20 CHAPTER 3. THE LANGUAGE

3.1.6 External variables

In order to access data provided by the outside world, the following constructs
are used:

envBool :: String -> Boolean
envFloat :: String -> Scalar
envVector :: String -> Vector
envPoint :: String -> Point
envColor :: String -> Color

3.1.7 Trigger

If we want to execute commands from the outside, to allow the framework to
create new objects inside our system, one can wrap the object command with
the trigger function and provide a name. This will generate an accessible
function in our resulting C++ class which will execute the wrapped command.

trigger :: String -> Cmd -> Cmd

mysys = trigger "medium_explosion" $
obj $ \t -> ...

Triggers can be applied at any level and on any command, but if a object
which depend on the parent is triggered, the external framework has to provide
the missing information, which may not be trivial to compute.

3.1.8 Snapshot

Sometimes we want to freeze the value of some expression at the time of creation
of an object. For instance, the position of a moving object that emits particles is
a good initial value for each particle, but since the object is moving, we cannot
simply evaluate the expression each frame. The snapshot function evaluates
the expression once, at object creation, then it remains constant for the entire
lifetime of the object.

snapshot :: Exp a -> Exp a

3.2 Examples

We give here a few larger examples on how particle systems are constructed.
For a more basic explanation of our language, consult the tutorial in section 2.

3.2.1 Bouncing particles

To achieve bounce, we want to test for collision and alter position and velocity
in that case. Our language is not powerful enough to do this properly, as we
cannot hold two values in one state simultaneously. So, in this example, we do a
compromise and only change the velocity. This works well under the assumption
that particle velocities are low compared to the time-steps. A picture of this
system is given in figure 3.1.
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Figure 3.1: Bouncing particles, from example 3.2.1.

ifE :: Boolean -> Exp a -> Exp a -> Exp a
changeY :: (Scalar -> Scalar) -> Vector -> Vector
gravity m = vec3 (0,-9.82 * m,0)

bounce =
obj $ \t ->
nrand $ \(x,z) ->
emitter 20 1 (part $ vec3 (x*2,15,z*2))
where
part ivel =
obj $ \t -> let
pos = origin .+ integrate t vel
vel = state2 (\v ->

changeY (\yv -> ifE (y pos <* 0) (abs yv * 0.9) yv)
(v .+ acc .* diff t )) ivel

acc = gravity 0.3
col = vec4 (1,1-t/5,1-t/10,1)

in point pos col 2 <+> kill (t >* 7)

3.2.2 Fire simulation

Here, we define each particle to have a temperature that decreases exponentially
over time. The temperature affects the particle’s color and upward acceleration,
as to create an effect of warm air surging upwards and then cooling. We also
emit particles over an area of 2x2 units, with an random initial position, to
simulate turbulence at the base of the fire. A picture is given in figure 3.2.

fire =
obj $ \t ->

nrand $ \(x,z) -> let ipos = vec3 (x,0,z) in
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Figure 3.2: Fire simulation, from example 3.2.2.

nrand $ \(ivel::Vector) ->
emitter 500 1 (part ipos ivel)

where
part ipos ivel =
obj $ \t ->

let pos = snapshot ipos .+ integrate t vel
vel = snapshot ivel * 3 .+ integrate t acc
acc = gravity 0.2 .- vel .+

vec3 (0,max 0 (temp/3-15), 0)
temp = 100 * exp (-t * 0.3)
ct = temp/70
col = vec4 (1,ct/2,ct/4,ct)

in point pos col 2 <+> kill (y pos <* 0)

3.2.3 Fireworks

Here we have three levels of objects. First, we have an emitter that fire rockets,
ten each per second, at a random, but generally directed upwards, velocity. The
rockets emit small particles as they fly away. Each of those particles are affected
only by gravity, fading from green to black over time. A picture is given in figure
3.3.

fireworks =
obj $ \t ->
nrand $ \(x,z) -> emitter 10 1 (emit2 $ vec3 (x*2,15,z*2))
where
emit2 ivel =
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Figure 3.3: Fireworks, from example 3.2.3.

obj $ \t -> let
pos = origin .+ integrate t vel
vel = snapshot ivel .+ integrate t (gravity 0.3)
in point pos white 2 <+> emitter 50 1 (part pos vel) <+>

kill (y vel <* 0)

part ipos ivel = obj $ \t -> let
pos = snapshot ipos .+ integrate t vel
vel = origin .+ integrate t acc
acc = gravity 0.4
in point pos (lerp t green black) 2 <+> kill (t >* 1)

3.3 Formal semantics

In this section we give formal semantics for our language. The reason for this
is that since the source and target languages have quite different semantics, we
need to define this translation properly, so that there is no discrepancies between
what the user specifies and what the compiler outputs. We also make different
choices depending on if we want correct behaviour or efficient implementation,
and these need to be documented.

Before describing the semantics in detail, we will look at our compilation
target and how and where our program is executed. With this in mind, we
present a complete, but restricted, abstract syntax that we will use to finally
define our semantic relations.
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3.3.1 Calculation model

We want to create, simulate and destroy objects (that is emitters and/or par-
ticles). Their behaviour depends on their age, but may also link to external
data, such as wind direction or the position of an object or their parent object.
These behaviours may also be quite complex, such as such as collision or physics
simulation, which often requires both state and the ability to know how big the
current time-step is (this is necessary in order to answer the question “Will we
collide during this frame?”).

The execution environment we target will not have lazy evaluation if we do
not implement it ourselves and further, the graphics processor targeted in this
thesis does not have sufficient semantics for efficient handling of expressions
using any form of state, so we need to overcome this gap in some way.

As has been noted previously in this report, we will have a set of objects
that exists within our systems and are simulated iteratively. Some will emit
new particles, others will display some graphics, etc.. Assuming our system is
running, for each update we need to perform a number of steps for each object
in our system.

• Evaluate the expressions

• Execute any commands

Depending on the expressions and commands of an object, evaluation will
take place at different places. Optimally, we want everything to be computed on
the GPU, freeing the main processor for other, more complex work (typically
AI, physics and similar tasks). However, the differing semantics force us to
divide the work between the two execution units.

Evaluation of emitters must take place on the CPU, since an emitter will
modify a state (the set of particles to be displayed). Particles, however, can
be evaluated entirely on the graphics adapter, providing that they do not have
any state in their expressions. In those cases, we can split the evaluation into
stateful and stateless parts.

3.3.2 Calculation types

We have four types of calculations, with different complexity and semantics. We
will use these properties to place their evaluation on different parts of the target
platform.

E expressions Simple side-effect free expressions with non-recursive lets and
strict (call-by-value) evaluation.

A assignments Assigns the value of an expression to a variable.

B behaviours This is what the user deals with when supplying values to com-
mands. The more complex semantic constructs here are transformed into
simpler expressions when the object is created.

C commands Commands are used at the highest level, where we actually get
some visible results. They are used to create objects and display graphics.
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Expressions and behaviours are polymorphic and four types of results are
supported: Boolean, Scalar and Vectors (having three or four components).
Only floating point arithmetic is supported, due to the architecture of our target
platform, which means that booleans are represented with the numeric values 0
and 1.

We need to define two more things: our output, in form of graphic on the
screen, and what data our objects should contain. For the latter, we must
obviously include the command and the creation time of the object. We also
need to hold some state (a mapping from variable name to value), and a list of
assignments, which are used to update the state each frame.

Note that we have two states with different scope and mutability. One is
per-object or local and mutable, the other is per-system or global, and is not
mutable from the object’s point of view. The latter data can only be modified
from an external source (see section 3.1.6 for more details).

3.3.3 Abstract syntax

Figure 3.4 gives a restricted form of the abstract syntax of our language. We
define op to be any of the usual operators over expressions (numerical, trigono-
metric or logical operations) and semicolon as the sequencing operator.

3.3.4 Semantic evaluation relations

Expressions

Expression evaluation will be denoted ⇓e, with the relation shown below. We
will not provide detailed semantics for this relation, as they are rather obvious.
Suffice to say is that they are strict, have non-recursive lets, a non-deterministic
construct (rnd) and a set of operators commonly used with mathematical and
logical expressions.

(Expression × State) × V alue

(E, s) ⇓e v

Assignments

Assignments are denoted with ⇓a, a state-modifying relation. The semantics for
this are, as with expressions, obvious and will not be discussed in detail.

(Assignment × State) × State

(E, s) ⇓a s′

Update

During each frame update, we process the objects together with the external
state and the current time to produce new objects and output. This relation
is denoted ⇓α

u , where α indicates that output is being performed. This relation
only has a single construct, update, which is used to make one iteration step for
the system.
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C ::= emitter Brate Bqty C |
point Bpos Bcolor Bsize |
C; C | kill Bbool

B ::= snapshot B |
state (B′ → (B, B′)) B′ |
let x = B′ in B | E

A ::= x := E | A; A | nil

E ::= apply op [E] |
let x = E′ in E |
rnd | x | n

Output ::= τ | point(p, c, r)

State ::= Ident → V alue

Result ::= ok | remove

Object ::= (C, Statelocal, A,Time)

Figure 3.4: The abstract syntax used in our semantic relations

(T ime × Objects × Stateext) × Actions × Objects

〈t, o, se〉 ⇓α
u 〈o′〉

Commands

Command execution is denoted ⇓α
c , whose result is a set of enew objects, some

graphic output together and a status flag indiciating whether the object is to
be removed or not.

(Command × State) × Actions × (Result, Objects)
〈C, s〉 ⇓α

c 〈r, o〉

Behaviours

We define the interpretation of behaviours as a two stage process. At object
creation, all contained behaviours in the commands are transformed by the ini-
tialization step, denoted ⇓i. This will reduce the command to containing only
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expressions and also provide a possible initial state and a sequence of assign-
ments used to update the state. Thus, at runtime, we only have expressions,
assignments and commands to evaluate, which is rather straightforward.

(Behaviour × Stateext) × (Expression × Statelocal × Assignment)
〈B, se〉 ⇓i 〈E, sl, A〉

To simplify our semantic rules, and since behaviours are always contained
within commands, we use the same notation (⇓i), for initialization on commands.

3.3.5 Semantics of update

Update’s responsibility is to inspect each object and make sure that it is updated
to the current time. For objects created during frame we have two choices.
Assume that they are created at the end of the frame, thus we don’t have to
perform an update on them, or take into account the time difference between
their creation and end-of-frame. Since the update frequencies usually varies
between 20 and 60 hz, and one wants to use systems that emit more than a
hundred particles each second, visual artifacts appear since particles do not
appear to move in a continous stream. Therefore we take this extra step (which
incur a one-time cost every time a particle is created, but is acceptable).

The evaluation basically follows the step outlined in the beginning of this
chapter. The external state is merged with the local state during the evaluation
of each object.

〈C, s〉 ⇓α
c 〈ok, o′〉

〈A, s〉 ⇓a 〈s′l〉
〈update, o : o′, se〉 ⇓α

u 〈o′′〉
〈update t (C, sl, A, tcreate) : o se〉 ⇓α

u 〈(C, s′l, A, tcreate) : o′′〉

〈C, s〉 ⇓α
c 〈remove, o′〉

〈update t o se〉 ⇓α
u 〈o′〉

〈update t (C, sl, A, tcreate) : o se〉 ⇓α
u 〈o′〉

where s = [se, sl, time �→ t − tcreate]

3.3.6 Semantics of commands

kill

The kill command evaluates the boolean expression and signals if the result is
true, which aborts execution of other commands.

〈E, s〉 ⇓e 〈true〉
〈kill E, s〉 ⇓τ

c 〈remove,−〉

〈E, s〉 ⇓e 〈false〉
〈kill E, s〉 ⇓τ

c 〈ok,−〉
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sequencing

The sequencing execution only ensures that any remove status aborts evalua-
tion of further commands.

〈C1, s〉 ⇓α
c 〈remove, o〉

〈C1; C2, s〉 ⇓α
c 〈remove, o〉

〈C1, s〉 ⇓α
c 〈ok, o〉

〈C2, s〉 ⇓α
c 〈r, o〉

〈C1; C2, s〉 ⇓α
c 〈r, o〉

point

〈Epos, s〉 ⇓e 〈p〉
〈Ecolor, s〉 ⇓e 〈c〉
〈Esize, s〉 ⇓e 〈r〉

〈point Epos Ecol Esize Ek, s〉 ⇓point(p,c,r)
c 〈ok,−〉

We simply evaluate the expressions and use them as parameters in our out-
put.

emit

〈Erate, s〉 ⇓e 〈r〉
〈Enum, s〉 ⇓e 〈n〉

〈Ci, s〉 ⇓i 〈C′
i, s

′
i,local, Ai〉 for each i

〈emit Erate Enum Ek C, s〉 ⇓τ
c 〈ok, o〉

where o = ∀i. ∪ (C′
i, s

′
i,local, Ai, ctime(t, i, r, n))

Erate determines the number of emits events per second, Enum the number of
particles to be emitted at each such event. ctime(t, dt, i, r, n) calculates creation
times for the new objects, given the current time t, time passed since last update
dt, index of the current object i, rate r and number n as defined above. The
function also makes sure that expected behaviour is achieved if either r och n
is below 1. I.e. for constant rate and number of 0.5, a particle will be emitted
every 4 seconds.

3.3.7 Semantics of behaviours

The section on syntax overview describes briefly what each of these behaviours
do. Here, we formalize that description.

snapshot

Snapshot’s intent is to capture a behaviours value at the creation time of the
object. Therefore, we take care of snapshotting during the initialization stage.

〈B, se〉 ⇓i 〈E, sl, A〉
〈E, [se, sl]〉 ⇓e 〈v〉

〈snapshot B, se〉 ⇓i 〈v,−,−〉
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Note that we discard any assignments that result from intializing the “snap-
shotted” behaviour, as they are not relevant to the value of the expression.

state

State fits our iterative execution model perfectly, so by creating a new variable
we can transform it into a new expression, an assignment and add the variable
with an initial value to the state.

〈Binit, se〉 ⇓i 〈Einit, sinit, Ainit〉
〈Einit, [se, sinit]〉 ⇓e 〈v〉

〈B, se[x �→ v]〉 ⇓i 〈E, sl, A〉
〈Bs, se[x �→ v]〉 ⇓i 〈Es, ssl, As〉 if

{
x not ∈ dom(s)
f(x) = (B′, Bs)〈state f Binit, se〉 ⇓i 〈E, [sl, ssl, x �→ v], A; As; x := Es〉

Note that we, as with snapshot, discard the assignments Ainit caused by the
initial state behaviour, as we are not interested in any further evaluations. Also,
the state sinit is used only when evaluating the intial expression.

It’s worth noting that:

snapshot B = state λx.(x, x) B



Chapter 4

Compiler

Here we describe our implementation of the compiler. First, we will do an
overview of our target language and describe our approach to the compilation.
Then, we explain the abstract syntax and types used inside our compiler. We
also go through the passes briefly while explaining how they relate and their
ordering (if necessary), then each pass is discussed in more detail. Finally, we
describe our C++-backend.

4.1 Overview

The central item in our language is the object. As was noted in the section
3.3 on semantics, an object contains a number of commands and a state. The
state is initialized at object creation and updated with each object, together
with the execution of any commands that exist. We will therefore attempt to
compile our program into a set of low-level operations, such as assignments and
expressions, which are supported in our rather high-level target language. This
allows us to focus on even higher-level optimizations and avoid many previously
solved problems, such as register allocation or stack-usage calculations.

Our compiler will do as much simplification and optimization as possible,
making the iterative update explicit, while still retaining the original hierarchial
layout of our syntax tree. The backend is then responsible for transforming the
tree into a structure more suitable for the target language.

4.2 Syntax

In this section, we will explain the abstract syntax and the types, using a re-
stricted version for brevity. The full types are given in appendix B for com-
pleteness.

Throughout the compiler, we always work with the same type of syntax
tree, altough different passes may expect the tree to have different properties.
This makes it easier to reorder, insert or remove passes in order to find the
combination which yields the best output. Also, we can use a common set of
operations on the syntax tree (such as free variable extraction), almost regardless
of which pass we are in.

30
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4.2.1 The expression type

Here we explain the expression type and the different constructors.
First, a word about recursive expressions. We have our expression stored in

so called Normal Form, i.e. Apply Op [Expr], rather than as separate applica-
tions for unary, binary or n-ary operations. The advantages of this is that we
only have one constructor which is hold other expressions and this makes it easy
to write recursive operations over the syntax tree. The disadvantages is that we
may create malformed expressions, i.e we cannot be sure that an operation only
has the exact number of arguments that it requires. This has not shown itself
to be a problem while developing the compiler and the ease of which recursived
operations can be written has definitely improved code readability.

Our expression type have the following definition:

data (Indir e) => E e =
A Op [e] |
F (Func e) |
Var Scope Type Id |
LitB Bool |
LitF Double |
RandFloat |
Void

The Indir type class provides a level of indirection in the recursive step,
which we use both to annotate the expression with more information, as well as
wrapping it in other types that provide extra functionality. It is explained in
more detail in the next section.

Apply (A) This is our basic recursive step, where several expressions are com-
posed into one, using operations such as addition, assignment, etc.

Function (F) We allow the user to build expressions that contain functions,
so we must have functions in our type as well. However, our first trans-
formation is to introduce variables and replace the functions by actual,
inspectable expression.

Variables (Var) Our variables have, beside an identifier, also type and scope.
Scope defines if the variable is global (external), local (stored with an
object) or temporary (only used during computation of an expression).

Random (Randfloat) This expression is replaces by a pseudo-random num-
ber each time it is evaluated.

Literals (LitB,LitF) We use doubles to retain as much precision in the com-
piler as possible.

Void This is used during optimization to denote the empty expression.

It is worth noting that we use a restriced set of numerical operators, which
still allows all possible computations, to make optimization easier. More on this
in section 4.3.8.
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4.2.2 Wrapping the expression

In order to add information about our expressions, our expression type is para-
metric over a wrapper (or indirection) type. This type can either just add
information about an expression (e.g. a list of subexpressions occur̀ıng in it, see
section 4.3.8) or store a pointer to the expression, so that cyclic expression can
be found, as described in section 4.3.3.

The definition for our indirection type class is as follows:

class (Eq e, Show e) => Indir e where
unwrap :: e -> E e
wrap :: E e -> e

These wrapping functions are used whenever one wants to inspect an expres-
sion or (re)build expressions. For the main part of the compiler, no annotation
is added so the wrapping type has the following definition:

newtype Expr = MkExpr (E Expr) deriving (Eq,Ord)

The downside of this is that it is cumbersome to use pattern matching on
composite expressions, as the MkExpr type constructor clutters the code. This
can be eased by applying unwrap on the list of subexpressions but is not always
feasible.

4.3 Passes

Here, we first give an overview of the passes and a short description of their
individual purpose, as well as relating them to other passes. Then, each (non-
trivial) pass is discussed in detail.

4.3.1 Overview

Each pass attempts to deal with a single problem only. The first passes work
mainly to make the expression more applicable to further processing, such as
optimization of different kinds. Here follows a brief description of each pass,
ordered from first to last.

functions and cycles First, we need to introduce variables to get results from
any functions we have. We also need to find cycles and make them explicit
to avoid infinite structures. As the cycles easily run through our functions,
we need to perform both of these in the same pass.

resolve cycles We transform cyclic expressions into expressions with state,
using the previous value where possible (otherwise we fail).

scoping Expressions in child objects that refer to their parent are moved to
the parent object.

integrate/derive Integration/Derivation expressions are turned into iterative
approximations using state.

snapshot Snapshot expressions are changed into the equivalent state expres-
sions (see section 3.3.7) that never update their state.
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state State expressions are split into initialization, value calculation and update
parts, as in our semantic model in section 3.3.7. This means that we
partially intialize our behaviours in the compiler.

if-floating Computation is pushed down the branches of conditional statement
to open up more opportunities for optimization later in the compilation
stage

let-floating Let-expressions are also transformed to form as “dense” expres-
sions as possible.

scalar-conversion Computations performed on the CPU need to be scalar,
thus we split all vector expressions into their components.

local optimization Algebraic optimization, constant folding, etc.

common subexpression elimination Finds shared expressions and replaces
them with a single computation.

output Transforms the compiled and optimized program into C++-code.

After the snapshot pass, our expression mostly contains different let and
state-expressions. Many of these are equal and could be unified by common
subexpression elimination, had we been able to test not only for exact equality
but also for alpha equality.

The passes from state to scalar-conversion attempts to produce as unclut-
tered expressions as possible, in order to get the maximum benefit out of the
optimization stages.

4.3.2 Introducing variables

As we permit expressions with functions and functions are black-box data in
Haskell, we need to transform them into concrete expressions before we do any
further processing. We do this by generating fresh variables and applying them
to the functions. Also, we need to combine this with the search for cycles, as
there is no guarantee that a cycles will not involve a function, or vice versa.

We have three types of function expressions, whose definition is as follows.

data (Indir e) => Func e =
RandVar (e -> e) |
StateVar (e -> (e,e)) e |
TimeVar (e -> e)

RandVar As noted in the syntax section 3.1.4, we need to ensure that intro-
duced random variables are different. By wrapping this in a function it is
possible to introduce separate variables for each random expression during
compilation, thus avoiding any confusion.

StateVar State is represented as a function from the previous state to a tuple
of the value and the new state. As we have a primitive StateE in our
syntax, this application is very straight-forward.

TimeVar Objects are, as noted in section 3.1.1, functions from time to com-
mands and the hierarchial structure of objects makes it possible for childs
to contain expression referring to their parent’s time.
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4.3.3 Finding cycles

The cycle in the following expression is easy to see, but evaluating this in Haskell
yields an infinite loop structure.

> let p = (3 + p) :: Expr

> p

3 + 3 + 3 + 3 + ... <forever>

In order to find cycles, we want observable sharing, a technique introduced in
Lava [14], an embedded language for defining, testing and compiling hardware
descriptions. In that report, a more in-depth discussion on this problem is given.
The solution is a type called Ref, which allows the user to determine whether
two Ref’s were created from the same variable.

Ref basically allows the following operations:

data Ref = ... -- :: * -> *; Eq, Ord, Show

ref :: a -> Ref a
deref :: Ref a -> a

This is exactly what is necessary to find cycles, as it is indeed the same
expression used again. In order to apply this to our expressions, we make sure
that the expression type is wrapped with Ref at every use. This is accomplished
by using the following indirection type (outlined in section 4.2.2) for expressions:

newtype ERef = MkERef { eref :: Ref (E ERef) } deriving (Eq, Show)

instance Indir ERef where
unwrap (MkERef e) = deref e
wrap e = MkERef (ref e)

> let x = ref 2

> x == x

True

> ref 2 == ref 2

False

When traversing the syntax tree, we keep track of all references used previ-
ously (in expressions further up in the tree) and search the current expression’s
reference in order to find cycles. If a cycle is found, a new variable is created
and we get an explicit recursive let-expression (the LetRec operator, see section
B). These are then resolved (if possible) in later pass.

So, running the previous example again, but with our ERef type instead, we
see that we have found the cycle successfully.

> let p = (3 + p) :: ERef

> p

letrec rec 1 = 3 + rec 1
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We could also have used this to find sharing between subtrees (horizontal
sharing), but have chosen not to. The main reason is that this is also done
during common subexpression elimination (CSE), where we also find sharing
between expressions not having the same origin (see example below). Further,
the compiler might choose to inline these expressions and altough they appear
shared in the source, they are not so after compilation.

-- sharing possibly found with Refs
y = let z = sin x

in z + z

-- sharing impossible to find with Refs
-- (might be the result of inlining the previous example)
y = sin x + sin x

4.3.4 Resolving cycles

The previous section described how to find and make explicit any cyclic struc-
tures. There is still a problem in evaluating these, as we do not have lazy
evaluation in our target language. Our strategy at solving this involves noting
that we are evaluating our expressions iteratively and thus can use an iteration
approximation instead.

Consider the following expression, which is a differential equation of the first
order. Our compiler finds the cycle and returns an expression with a recursive
let, something our target language lacks semantics to evaluate properly.

let e = let p = 3 + integrate t v;
v = 2 - p

in (10 + p) :: Scalar

> e

e = 10 + (letrec rec 1 = 3 + integrate t (2 - rec 1))

As this is a differential equation, we could apply a symbolic ODE-solver and
get the resulting expression directly. However, the possibility of creating com-
plex expressions means that such a solver might not always be successful. Thus,
we need a numerical solution, and a a common approach to solve differential
equations numerically is to transform them into a state model. We have here
chosen the simplest solver, namely Euler integration. By finding the initial value
of this expression and introducing a state, we get the following expression:

e = 10 + state (\p’ ->
let p = 3 + integrate (2 - p’)
in (p,p)) 3

Actually, we can do this tranformation automatically as long as the cycle
passes through an expression that has a well defined value at t = 0. For expres-
sions involving integration, who essentially are differential equations, this works
well. For other expressions (e.g. boolean expressions), this approach might
not be feasible at all, so the user must be aware of this when writing cyclic
expressions.
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4.3.5 Scoping

Since we allow child objects to depend on their parent, i.e. the child contain an
expression with variables referring to the parent’s time and/or random values,
it is necessary that these expressions are evaluated in the parent object, not in
each child. Naturally, this also is an optimization in most cases. Therefore, we
need to move expressions into their correct scope and replace them with links
to the parent.

One problem with this is that when a parent is removed from the system, we
cannot immediately replace it with a new object if it still has children. Some sort
of reference counting or garbage collection is necessary to support this scheme.
Of course, one could decide to kill all child objects when a parent dies, but this
is often not desirable. Our current protocol also permits children to detect and
act on the case when their parent is dead, as the same expression to kill the
parent could be use in a conditional statement to alter the behaviour of the
children.

One optimization that we currently do not employ is to detect whether
parent expressions are used only in snapshots, and thus need not be stored in
the parent’s state, but only computed when the parent creates a new child.

4.3.6 Integration/Derivation

Integration and derivation can be done either symbolically or numerically. Cur-
rently, we have chosen the most general path and always use numerical integra-
tion (although we have prepared for the future extension to attempt symbolic
integration), employing Euler-integration, as there are some expressions that
are hard or impossible to perform symbolic integration or derivation on.

Numerical integration works well for most expressions, but as is the case
with Euler steps, the result is dependent on the step-length. With particle sys-
tem, one is normally only concerned with visual appearance, so as the resulting
system appears correct, there is no problem. However, in order to achieve this,
one expects every particle to behave like every other of the same type. This
means that the step-length should be the same for each step during each parti-
cle’s life time, i.e. for all updates if particles are created continously. This may
or may not be the case, depending on what framework the system is inserted
in.

Since it is often enough to fix the time-step at a certain value to get repro-
ducible results, one could use a rather low time step and interpolate between
the computed values. By tweaking the constants of the equations the desired
apperance is then achieved, which may be different from the physical, correct
behaviour, but as noted above, correctness is not as important as appearance.

4.3.7 Floating

If-floating

If-floating attempts to push computation down the branches of conditional ex-
pressions, to open up possibilities for optimization. This technique is used the
Pan [12]-compiler (Pan is an embedded language for describing images over
time). An example of how if-floating works can be seen in figure 4.1.
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Figure 4.1: If-floating facilitates optimization.

-- start
x = (let y = sin t in 2*y*y) / 2

-- lift y
x = let y = sin t in (2*y*y/2)

-- apply partial evaluation
x = let y = sin t in y*y

Figure 4.2: Let-floating

On the CPU, this does not create extra work, only more code in the program.
However, as the GPU does not have branching1, we should probably be more
careful about using this. However, we currenlty assume that our later common
subexpression elimination will take care of any expressions occuring in both
branches, eliminating duplicate work.

Let-floating

Let-floating works in much the same way as if-floating, lifting let-expressions as
high as possible in the tree and allowing it to be inlined therefore producing a
“tighter” expression with more optimization capabilities. An example of this is
found in figure 4.2.

4.3.8 Optimization

We optimize our expressions in two steps. First we perfrom local optimization
using algrebraic rewrite rules to minimize each expression as much as possi-
ble. Secondly, we perform common subexpression elimination to avoid duplicate
work.

In order to simplify constant folding and the number of cases in the local
optimizer, as well as reducing the forms an expression can take (to ease equality
comparision when doing global optimization), we have removed some operators
that can be expressed in terms of others. For instance, we do not have sub-
traction, only negation and similarly only reciprocals, not division. This means

1Our target, the GeForce3/4 does not. Newer chips have emerged since then which support
branching and looping in the vertex processor. They do not have it for the fragment processor
yet, though.
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Figure 4.3: Optimization of products

Figure 4.4: Optimization of if-expressions

that we have less cases to deal with during local (algebraic) optimization, and
less variations of the same expression, so that we can identify equal expressions
easier during global optimization.

Local optimization

Local optimization essentially amounts to using common algebra rules together
with partial evaluation to minimize the expressions. In making sure that each
transformation results in a smaller expression, we can use fixpoint iteration to
reach the smallest possible expression.

Examples of how local optimization work can be found in figures 4.3 and
4.4, where the product in the first figure is simply reduced to the zero as it
is the identity element for multiplication. In the latter, the negation of the
boolean expression can be removed if we interchange the two branches, yielding
an equivalent, but smaller, expression.

Common subexpression elimination

In order to identify equal expressions, we keep track of all expressions encoun-
tered and label each with an identifier. We also annotate the expressions (using
an indirection type described in section 4.2.2) with its identifier and the identi-
fiers of all its subexpressions. This is useful in determining where to insert the
computation of the common subexpression, as we shall see later.

Our common subexpression elimination (CSE) algorithm works in three
steps which requires a total of two traversals of the syntax tree. Figures 4.5
and 4.6 outline the steps taken by the algorithm, which works as follows:

• First, we walk down the tree and label all expressions, ensuring that equal
expressions get identical identifiers.

• Secondly, as we back up, we gather all identifiers from the expression’s
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Figure 4.5: CSE algorithm part 1: find shared trees and replace by identifiers.

subexpressions. This means that the top expression, it will hold a list of
all identifiers ever.

• Last, we go down the tree again and examine each expression and the
identifiers of its subexpressions. If an identifier occurs in two or more
subexpressions, we insert a let-expression and replace the common ex-
pression with a variable in all subexpressions.

As with local optimization, we apply this repeatedly until no further change
occurs (this might be possible to avoid by rewriting the algorithm slightly). We
must take care not to unify only side-effect free expressions, that is no random
expressions or commands (assignments, etc.). We also avoid optimizing some
(basically) zero-cost operations, such as array-indexing.

We do not identify subexpressions of n-ary operators as common subexpres-
sions, i.e a + b is not identified in (a + b + c) · (a + b + d). One way of attacking
this is to analyse what the typical expressions look like and use this heuristic to
break them into composite expressions (i.e. sum of sums), in order to get better
output. Also, we do not perform alpha-equivalence tests in order to compare
expressions with bound variables.

Apart from this, the algorithm produces good output, but is a bit slow (ca 5
seconds on each of the examples in section 3.2) and produces a lot of “garbage”
due to the reapplication, i.e. let-expressions such as let x = y in x, that has
to be removed later (by another pass of local optimization, for instance).

4.3.9 Output

The final stage is to turn our compiled and optimized program into compilable
C++-code. This done by first breaking the hierarchial structure into a set of
objects and extracting the necessary information. This allows us to build a
run-time system that creates, updates and removes objects during simulation.
The final step is to create concrete, readable code, which is done with the aid
of a pretty-printing library which is now available as a part of the GHC Haskell
compiler’s standard library.

The backend does not support GPU-execution at this moment, but the com-
piled program is structured such that the state-less expressions are easily iden-
tifyable.
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Figure 4.6: CSE algorithm 2: propagate indentifiers and reinsert tree at parent.

Separating objects

After compilation and optimization, the syntax tree is still hierarchial, but now
only contains basic operations, such as assignments, if-statements and our com-
mands (emit, point, etc). The first step is to separate each object into state
variables, create and update procedures. We also gather external variables (to
generate access functions) and trigged commands.

Processing objects

As the different types of objects are fixed (by the way we define our systems) but
the number of objects may vary, objects of the same type are stored in separate,
resizable containers. During update, we then iterate through each container and
apply the same set of commands to each object.

Each object has a separate create-functions, which takes the current time
and a reference to the parent object, should such exist. The create function
initializes an object and updates it so that it matches the current time. The
reason for this is, that our emitters create several objects during a frame and
we want correct behaviour for this. This is also noted in section 3.3.6.

There is only one update-function, which in turn processes each type of
objects. This allows us to compute expressions common to several objects once.
This function also makes sure to process parent objects before child objects, so
that childs who reference their parents always get the correct value.

Aging objects

Since the created system stores time internally and only updates it with deltas,
it can be defined to start at zero. Then, by storing the creation time of each
object, we can compute the age without updating any state for the object. This
is desired as floating point computations are faster than memory accesses on
modern memory-cached computing architectures. It is also essential if we want
to move the computations to the CPU in its entirety.

By marking dead objects with an impossible creation time (such as -1) and
storing the locations of these in a separate contaniner we can efficiently skip
them while updating and quickly find free locations for new objects.
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Related work

Here we look at other approaches to particle systems and embedded languages
that relate to our own and compare their approaches with ours, where appro-
priate.

5.1 Particle systems

Particle system tutorials Tutorials that introduce particle systems to be-
ginner programmers (e.g. a tutorial on Gamasutra [8], the website of a game
developer maganize and NeHe [9], a OpenGL tutorial website) both state that
the usual way to build system is to write a single particle structure that holds
all properties of each particle (position, velocity, color, mass, etc.) and then
define emitters and simulations over these.

Clearly not all particles require all these properties, certainly not as a state,
and there may be other properties one desires that does not fit this model.
Also, moving this to Cg essentially boils down to writing and maintaing two
code bases. This may be feasible for small applications, but as was noted in the
introduction, does not scale well to larger systems.

Our approach ensures that each system only does the required computations
and also eases reusability and maintainability due to the declarative approach.

GPU-only particle systems In order to show what the new GPUs can do,
manufacturers present demos where the particle is computed (almost) entirely
on the GPU (creation and destruction are still CPU based).

However, as one cannot hold any state for the particles, the simulations
becomes rather restricted. Also, on systems without programmable graphics
adapters, one again has to duplicate the development effort. Our approach is
better for the same reasons given the previous section.

The Particle Systems API The Particle Systems API [10] is an OpenGL-
like API in which the user can design particle systems by defining properties
and forces on particles and how they should be created and destroyed. It defines
a notion of particle groups which are a set of particles with identical behaviour.
Each particle group can then be affected by predefined actions, such as gravity,
wind, etc.
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Once a system is specified, the list of actions can be compiled similarly to
a displaylist in OpenGL. These list are then executed on the current parti-
cle group, either on the main CPU or on the custom geometry processors in
the SGI PixelFlow architecture, a workstation predecessor to today’s user-level
programmable GPUs.

This system also suffers from the restriction on predefined properties and
behaviours, making customization difficult. The author mentions this in the
design report and expresses the need for a more general way to handle properties
and actions.

5.2 Languages & compilers

There are a few systems that also work with compiling a embedded visualiza-
tion and simulation language. The author have not found any programming
languages or compilers dealing directly with particle systems, but there are a
number of closely related products.

All of these are embedded languages in Haskell and deal either with anima-
tion or interesting compilation problems.

Fran Fran (Functional Reactive Animation [11]) is used to model 2D and 3D
animations and sound. It has a continuous representation of time and uses
behaviours and events. This requires complex interval analysis to acertain as
when events occur, value updating and event handling/detection. The events
occur at certain, fixed points in time so that it is possible to shift behaviours
at mouse presses or when a boolean expression becomes true (e.g. when time
is equal to 10 seconds). The behaviours are evaluated lazily which makes it
possible to use cyclic structures.

The analysis required to compute this performed in an asynchrounous thread
evaluating a Haskell program, running in parallell a high-performance rendering
thread. The rendering thread samples values and performs interpolation to gen-
erate values at an interactive rate. Events and behaviours allow Fran’s output
to change, appear, disappear and vary in many interesting ways, reacting to
external input.

Fran is more expressive than our langugage, allowing behaviours to change
completely and even link them in cycles. This is due to its use of lazy evaluation
in the interpreter, which is written in Haskell, something that we cannot reapply
in C++ without considerable effort in our compiler. It also uses multithreading,
something we do not wish to impose upon the user of our system.

As there is only one time in the system, expressions for integration and
derivation are unambigous, and therefore there is no problem due with referen-
tial transparency, something that we had to take into account.

Pan Pan [12] allows the user to specify how images vary over position and
time. Images can be transformed, stretched, interpolated or modified in almost
any way possible, since a whole programming language is available to the user.

Images are simply represented as functions from time and position to color.
The expression for an image is compiled down to optimized C or machine code
which is then used to render each frame. The time is increased in discrete steps
and interval analysis (such as done in Fran) is performed.
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Pan does not have any notion of events but allows the user to provide ex-
ternally modifyable variables which can be integrated into the expressions, such
as the amount of rotation that is to be applied to an image, etc. Also, as with
Fran, there is only one time defined for the whole system.

Vertigo Vertigo [13] is essentially Pan for GPUs, although the compiler does
more on optimization and is specifically targetted towards GPUs. It produces
C#-code and DirectX-GPU assembly. Worth noting is that it handles both
position and color, so that one both make complex geometry transformations
and do custom lighting calculations.

Using Vertigo to compile our GPU-expressions directly is an option that
we would like to have explored. It is not suitable for CPU-compilation as it
is strictly functional (side-effect free). Otherwise, it shares much of the same
pro:s and con:s (with respect to particle systems) with its predecessors, Pan and
Fran.

Lava Lava [14] is a tool for describing and verifying hardware. The circuit
description can be compiled to VHDL for construction of hardware.

The interesting technique used here that applies to our compiler is the one of
detecting cyclic structures. Haskell does not normally allow this, which makes
it difficult to express such constructs in an intuitive manner. How this is used
syntactically is described in section 3.1.5 and how the compiler resolves this for
our target is discussed in section 4.3.3.
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Conclusions

The traditional way of developing particle systems for games written in C++
(or similar languages) usually consists of encapsulating different behaviours and
visualizations in different classes, and using parameters or inheritance to alter
properties of these systems. This can lead to inefficiencies (in the case of an
overly general particle class and a user only wanting simple properties) or low
reuse (systems with similiar behaviour often ends up as products of copy-paste
coding).

To remedy this, we have developed a language specifically targeted for par-
ticle systems and an accompanying compiler which takes system descriptions
and outputs them in the form of a complete C++-class.

6.1 Language

We have described our language in the form of a tutorial and given formal
semantics on the less obvious subset of the language. The language, like many
declarative languages, focuses on describing what should happen, not how it
should happen. This allows for remarkably concise descriptions of systems and
could be further improved once a library of common behaviours and concepts
is developed.

After a few iterations over the design, we ended up with a declarative lan-
guage similar to those of Fran[11] or Pan[12], which all differ rather much from
the usual imperative programming approach. At this stage, it became obvious
that it was possible to allow the user to build hierarchies of systems, emitters
and particles, something that is rarely seen in real-time particle systems.

6.2 Embedding in Haskell

Our language is embedded in Haskell, which provides us with indent-dependent
parsing, type-inference and first-order functions, among many other powerful
features. (See [3] for a complete description of the Haskell language.) Since our
language is defined as a set of Haskell objects (functions), it has been easy to
update, change and extend the syntax during development.

The use of Haskell means that we get some syntactic overhead that one
might have been able to avoid with a proprietary language, but this is mostly
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minor issues. More major issues are those of referential tranparency, which we
did not anticipate. The ability to define and resolving cyclic expressions is nice,
but the fact that expressions defined using let completely lacks any context
makes it necessary to ensure that each expression only depends on its input (as
true functions do). If one comes from a background in imperative languages,
one expects statements and expressions to depend on where they were written.
This is to be expected, since natural languages also has this property, so humans
are prepared to deal with this.

However, this has forced us to carefully consider what information is neces-
sary to evaluate certain expressions. This has led to the current language having
the good fundamentals on which to do further work.

6.3 Compiler

The compiler is capable of taking a description and compile it to a C++-class
that visualizes the particle system as having the expected properties. It deals
with referential transparency and both detects and resolves cyclic expressions
where possible and ensures that expressions are evaluated in the correct con-
text. The compiler currently handles integration and derivation numerically
only and is thus able to convert a mathematical expression to an iterative state-
based computation, which we can evaluate in our target language. It does local
optimization based on simple algebraic rewrite rules and also limited global
optimization. The backend outputs the system as human readable C++ code.

As has been proven in many previous projects, Haskell is well suited for
compilation tasks, and did not fail here either. However, the choice of having
a functional language as a source language made the compiler rather hard to
write, as the semantic gap is bigger compared with to the imperative target
language.
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Future Work

7.1 Language

The language is rich enough to describe most particle systems whose basic prim-
itive is a point. Expanding to allow different primitives is an easy task and does
not affect the language much. We will now look at some of the parts of our
language that does need extension.

Tuples Our language does not support tuples as a native data type, some-
thing that is necessary in order to have a composite state. Composite state
is required whenever one wishes to simultaneously update several values, e.g.
when handling collisions both position and velocity needs to be changed for
proper behaviour. However, this gives us some problems with integration, as
we want to change the accumulated value. An example using such a language
extension would perhaps look something like figure 7.1.

Monads The language might gain some clarity and become less error prone
if the systems were written using monads. Adding such a layer on top of the
existing primitive operations would probably be a rather minor effort, as the
mechanisms are already there. An example might be something like figure 7.2.

If all our computations where in the monad, the context would determine
which time would be used where and snapshots (see section 3.1.8) could be taken
automatically, depending on what the user desires. To define cyclic equation a
resursive monad [15] would probably have to be used.

Library We have only defined the basic building blocks that is necessary
to produce particle systems. Many properties reappear in different systems
and they should be factored out to a separate library. Also, the need for a
comprehensive geometric and linear algebra package is apparent.

Particle dependencies The property of particles being independent in our
system is not entirely correct, as singular particles can alter their behaviour
depending on their parents, but particles of the same type cannot affect each
other, i,e. it is currently not possible to simulate flocking or galaxies.
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obj $ \time ->
state (\(pos,vel) ->
let colTest p v = ... -- determine collision time and normal

(hasCol,colT,colNormal) = colTest pos vel
dt = time - prev time
dt1 = colT - prev time
dt2 = colT - time
(p1,v1) = simulate dt1 pos vel
vc = collide v1 colNormal -- new velocity
(p2,v2) = simulate dt2 p1 vc
(p’,v’) = simulate dt pos vel
simulate dt p v = p .+ v .* dt

in ifE hasCol (p2,v2) (p’,v’)
) (initpos, initvel)

Figure 7.1: Correct collision handling using tuple in the state

mysystem = do
ivel <- rand
pos <- origin .+ integrate ivel
emit 100 (part pos)

part ipos = do
pos <- ipos + integrate vel
point pos white 2
kill (time >* 3)

Figure 7.2: Using a monadic approach

In order for this to work, we need to be able to iterate over all other particles
of the same kind and accumulate an expression that we calculate once for each
particle. An example with particles that gravitate toward each other is given in
figure 7.3.

If the language is extended in this direction and add a feedback mechanism
to allow an application to inspect values in the particles, it should be possible
to apply it to scientific simulations. Coupled with execution on an efficient,
parallelized graphics card, this seems like a promising area for future research.

7.2 Compiler

Currently, the compiler does not produce code whose efficiency is even close
to that of a human programmer. The reason for this is mainly that the lan-
guage design took more effort than expected, and consequently the time left
to implement optimizations and other features in the compiler was not enough.
However, many of the planned items (listed below) do not relate to our language
as such, and could rather be implemented in any particle system.
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foldOther :: Exp a -> Exp b -> (\Exp a -> Exp b -> Exp b) -> Exp b

myparticle =
let pos = ipos + integrate vel

vel = ivel + integrate acc
acc = foldOther pos 0

(\opos sum -> sum .+ 1 ./ lengthSq (pos-opos))
in point pos white

Figure 7.3: Gravity example where particles depend on each other

Reference tracking Currently, child objects with references to their parent
are not tracked, so the output is incorrect if a parent dies and some of its children
still references it. This could easily be implemented with a smart pointer, using
either reference counting or some garbage collection scheme.

Optimization Adding symbolic integration and adapting global optimization
to test for alpha-equivalence1 should do a lot for the optimization, reducing the
calculations of typical systems to about 20-40% of their unoptimized counter-
parts, which would be well within the realm of human-produced code.

Adding a symbolic ODE solver that would be capable of resolving most of
the differential equaitions that occur would also improve performance a lot,
since each particle would only depend on its age and intial values. This would
reduce storage and memory bandwidth and also be ideal for GPU-execution.

GPU computation In the outset of writing the compiler, we wanted to move
stateless expressions to the GPU, in order to free the CPU for other work. We
were not able to complete that part, but our compiler already separates stateful
and stateless expressions. The remaining task is to output code in some shader-
language and ensure that data is fed correctly to the graphics card.

It is also desirable to move expressions containing state to the GPU as well,
as it is possible that the CPU has to do a major part of the calculations for some
particle systems. Clearly, we would like the GPU to do as much as possible.

The hardware used for development in our case (NVIDIA GeForce4) actu-
ally has the ability to reroute output from the rasterizer back into the geometry
stage, and thus allowing on-board per-vertex state, which is what we want.
This is achieved by storing our object data as pixels in a texture and using
that to produce a new texture, whcih then is fed back as vertex data. This
is achieved by the NV_pixel_data_range-extension [17] in OpenGL. However,
the rasterizer only outputs 8-bit integer precision per component and a maxi-
mum of four components (red, green, blue, alpha) as output, which obviously is
inadequate both in precision and quantity. It also lacks any form of advanced
fragment2-processing capabilities, which means that the hardware simply lacks
the semantics necessary to evaluate most expressions.

1Two expressions are said to be alpha equivalent if they are the equal except that their
bound variables may have different names.

2Normally equivalent to a pixel. The difference between fragments and pixels appear when
doing anti-aliasing.
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Newer hardware that support floating-point precision in the rasterizer stage,
such as NVIDIA’s GeForceFX or similar cards, makes this technique much more
appealing. These cards also have programmable fragment processing, similar to
the vertex processing found in our card. In fact, this technique has already been
used for cloth simulation [16].

SIMD Since we already deal with the vectorized execution environment of
GPUs, we could just as well use some of the SIMD-instructions available on
todays modern CPUs and further enhance the performance and applicability of
our system. Since there are certain requirements on how the data is laid out in
memory for these instructions to be efficient, using the compiler to automate
such task would be ideal.

Scene-graph inclusion In order to include the systems in a scene graph,
there will be a need for some communication between the framework and our
systems, to allow for updates, renderings, viewport/occlusion culling and the
access of external variables. Appendix C completes the tutorial in the language
section with the basic concepts for insertion into in external frameworks, and
thus gives an outline of what to expect from future versions of this system.

Application output Currently, the output is a tighly encapsulated C++
class. One might envision the output of a complete application in order to
test and modify the esystem before it is tested in a larger context. Such an
application should provide GUI-controls to manipulate different parameters in
the system, just as Pan [12] and Vertigo [13] does. Another concievable target
is a screen-saver application, which would simply initialize the particle system
and let it run forever.
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Appendix A

Typing implementation
excerpts

A.1 Statically typed layer

newtype Exp a = E ERef.ERef deriving (Eq)

data Float3 = F3 deriving (Eq, Show)
data Float4 = F4 deriving (Eq, Show)

type Cmd = Exp ()
type Boolean = Exp Bool
type Scalar = Exp Float
type Vector = Exp Float3
type Color = Exp Float4

type Point = Vector

...

(ERef.==*),(ERef./=*) :: ERef.ERef -> ERef.ERef -> ERef.ERef

(==*), (/=*) :: Scalar -> Scalar -> Boolean
(==*) = lift2 (ERef.==*)
(/=*) = lift2 (ERef./=*)

...

class NumE a where

instance NumE Float where ...
instance NumE Float3 where ...
instance NumE Float4 where ..
instance NumE a => Num (Exp a) where ...
instance NumE a => Fractional (Exp a) where ...

52



A.2. RANDOM EXPRESSIONS 53

instance NumE a => Floating (Exp a) where ...

instance Ord Scalar where ...
instance Enum Scalar where ...

A.2 Random expressions

class Fractional a => Rand a where
rand :: (a -> Exp b) -> Exp b
nrand :: (a -> Exp b) -> Exp b
nrand f = rand (\v -> f (v-0.5))

instance Rand Scalar where
rand f = E (ERef.rand (\v -> unE $ f $ E v))

instance (Rand a,Rand b,Fractional (a,b)) => Rand (a,b) where
rand f = rand $ \x -> rand $ \y -> f (x,y)

instance (Rand a,Rand b,Rand c) => Rand (a,b,c) where
rand f = rand $ \x -> rand $ \y -> rand $ \z -> f (x,y,z)

instance (Rand a,Rand b,Rand c,Rand d) => Rand (a,b,c,d) where
rand f = rand $ \x -> rand $ \y -> rand $ \z -> rand $ \w ->

f (x,y,z,w)

instance Rand Vector where
rand f = rand (\e@(x,y,z) -> f (vec3 e))

instance Rand Color where
rand f = rand (\e@(x,y,z,w) -> f (vec4 e))

A.3 Numerical operations

class (NumE a, NumE b, NumE c) => NOp a b c | a b -> c where
(.*),(.+),(.-), (./) :: (NOp a b c) =>

(Exp a) -> (Exp b) -> (Exp c)
(.*) = op (*)
(.-) = op (-)
(.+) = op (+)
(./) = op (/)
op :: (Exp c -> Exp c -> Exp c) -> Exp a -> Exp b -> Exp c
op f a b = uncurry f $ conv a b
conv :: Exp a -> Exp b -> (Exp c,Exp c)

instance NOp Float Float Float where
conv a b = (a,b)
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instance NOp Float Float3 Float3 where
conv a b = (vec3f a,b)

instance NOp Float3 Float Float3 where
conv a b = (a, vec3f b)

instance NOp Float3 Float3 Float3 where
conv a b = (a,b)

instance NOp Float Float4 Float4 where
conv a b = (vec4f a,b)

instance NOp Float4 Float Float4 where
conv a b = (a, vec4f b)

instance NOp Float4 Float4 Float4 where
conv a b = (a,b)

vec3f :: Scalar -> Vector
vec4f :: Scalar -> Color
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Abstract syntax type

-- variable scoping
data Scope =

Temp |
Local |
Global
deriving (Eq, Ord, Show)

-- expression types
data Type =

BoolT |
FloatT |
Vector3T |
Vector4T |
VoidT |
CmdT
deriving (Eq, Ord, Show)

-- variable identifiers
type Id = String

-- function expressions
data (Indir e) => Func e =

RandVar (e -> e) | -- (r -> e)
StateVar (e -> (e,e)) e | -- (s -> (val,s’)) s_0
TimeVar (e -> e) -- (t -> object)

-- operations
data Op =

-- commands
Object | -- [timevar,init,cmds] => Create an object
Trigged String | -- Trigged id [cmd] => Trig command externally

Point | -- [pos,col,size] => Display point
Emit | -- [rate,num,cmd] => Executes cmd at intervals

55



56 APPENDIX B. ABSTRACT SYNTAX TYPE

Kill | -- [bool] => Kill object when true

-- behaviours
StateE | -- [var,out,update,init] =>
LetRec | -- [var,expr] => let var = expr in var (recursive let)
Snapshot |
Parent | -- reference the parent’s variable

-- assignment exprs
New | -- [var,expr] => As assign, but used for declaration
Assign | -- [var,expr] => var := expr
Seq | -- => Evaluate expressions sequentially

-- expressions
Let | -- [var,expr,expr2] => let var = expr in expr2
If | -- [a,b,c] => If a then b else c
Vec | -- [..] => Build vector expression from several scalars
Idx | -- [i,v] => v_i (v = vec expr, i index)

-- mathematical ops
Add | Mul | Rcp |
Sqrt | Abs | Exp | Log |
Integrate | Derive |
-- trig
Sin | Cos |
-- compare
Eq | Ne | Lt | Gt | Le | Ge |
Min | Max |
-- boolean
And | Or | Xor | Not

deriving (Eq, Ord, Show)

-- indirection class (defines wrapper type)
class (Eq e, Show e) => Indir e where
unwrap :: e -> E e
wrap :: E e -> e

-- expressions
data (Indir e) => E e =
A Op [e] |
F (Func e) |
Var Scope Type Id |
LitB Bool |
LitF Double |
RandFloat |
Void



Appendix C

Working with an external
framework

This appendix gives details about a possible future extension to our language,
namely how it should interact with an external framework, such as a scene graph
or a game engine.

C.1 Running several systems in one class

Our tutorial, chapter 2, held most of the things you need to do particle systems,
but in order for them to be efficient, you want bulk processing/drawing and
heavy sharing. It is therefore possible to avoid creating the system at class
instantiation time and rather call a function in the class each time you want
something to happen. Say that we want to create explosions at random points
in space, but since the particles all look the same and handle the same way, we
should keep them within one class. Let’s see how we can do that.

trigged :: String -> Command -> Command

particle p =
obj $ \t ->
nrand $ \v ->
let pos = snapshot p + integrate t vel

vel = snapshot v + integrate t acc
acc = vec3(0,-9.82,0) - 0.5 .* vel

in point pos red 1 <+> kill (t >* 10)

emitter p =
obj $ \t ->
emit 1 100 (particle p) <+> kill true

mysystem =
let init_pos = extPoint "center_pos"
in trigged "explosion" (emitter init_pos)
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Since we are taking a snapshot of the external variable, we can give it as a
one-time argument when creating the system. An example of how things would
be if we would like to read continously from an external variable that is specific
for each trigged instance is provided below. This will give the following interface
class:

class explosions
{
public:
explosions();

void explosion(const vec3 &center_pos);
...

};

Note that there is nothing stopping us from having several different particles
/ emitters in one class. In fact, taken to the extereme, all particles in the world
can be handled by one class. This would certainly give the compiler the best
opportunity to optimize things as it knows about all particles.

C.2 Communication

The one-way communication that we had in the previous example is not always
desirable, depending on the framework. If some advanced occlusion culling is
used, the framework can probably make intelligent decisions as as to when the
system is visible It could also be that we want to track the external variable
continously, which we can do by storing the reference for the duration of the
system. Now it is possible that the variable that we are tracking may become
invalid. The framework must have then have some way of letting us know that
the reference is no longer valid.

This means that we need a way for the framework to:

1. Query for a bounding volume

2. Updating the system (thus updating the bounding volume)

3. Drawing the system

4. ”Freezing” external variables so that they will no longer be accessed.

5. Killing the system completely.

6. Be informed when the system is expired so that visibility testing is no
longer necessary

4 and 5 adress the same problem, but the latter also provides a way to do a
clean shutdown. We solve these problems by introducing two interfaces. One is
a callback that is used to notify the framework when the system has expired, the
other is a tracker that can be used to query for bounding volumes and intiate
different actions on the system. The callback and tracker classes look lite this:
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class callback {
public:

virtual void operator()() = 0;
};

class tracker {
public:

virtual Sphere& bounding_volume() = 0;
virtual void update(float time) = 0;
virtual void draw() = 0;
virtual void kill() = 0;
virtual void snapshot() = 0;

};

class AllMyParticles {
public:

tracker * explosion(const Point &center_pos,
callback* expired = 0);

...
}

This way, the scene graph system will have enough information to decide
wether the system should be drawn or not, and the class will know when to
update and draw the particles.

There are a few rules to this protocol. The class guarantees that after sending
notifying through the callback, or recieving a call to kill or snapshot, it will not
access any references given for this system. In return, the framework must
guarantee not to call any function in the tracker after any such communication
has occured.

In order to guarantee that there will be a valid reference (it is easy, but
seriously wrong, to pass a local variable when instantiating the system) one
could add it to the tracker instead:

class explosion_tracker : public tracker
{
public:

Point center_pos;
~explosion_tracker() { snapshot(); } // or kill()

};

This would make things entirely safe, but if the system dies calling snapshot
would be an error, as there is no one in the other end to recieve that call. This
could be solved by letting the system store orphaned trackers until they are
snapshotted or killed, whether or no there exist any particles or emitters to be
tracked.

C.3 Advanced particle trickery

Assume that we are making a spooky adventure game, where our hero (or
heroine) is wading through a swamp in the middle of the night with only a
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lantern as light source. Naturally, all sorts of moths and mosquitos, whichof
there exists plenty, since this is a swamp after all, fly towards the lamp. The
game engine spawns swarms of flies that moves to the lantern, circle around it for
some time but then depart back to their original position and die. Occasionally,
our main character throws fireballs at these swarms, as he or she has been in the
swamp since noon and are quite fed up with their abominable biting, buzzing
and generally annoying attitude. It may also happen that the lantern goes out
(it was gotten rather cheap from a suspicious looking old witch living at the edge
of the swamp), in which case our poor adventurer soon ends up being consumed,
lantern and all, by the ancient, unfathomable horror that lurks beneath the dark,
oily surface. The flies however hangs around for a while, simply because they
are too stupid to do anything else.

So, first we define our particle systems. It will consist of three types of
particles:

• The mosquitos

• The fireball

• An explosion

Their definition would be something like:

mosquito :: Point -> Point -> Command
mosquito lantern_pos init_pos =
obj $ \t ->
rand $ \x::Vector ->
let dir = lantern_pos - pos

time_to = 30
pos = snapshot init_pos .+ integrate t vel
vel = x .+ t integrate acc
acc = clamp $ ifE (time <* time_to) dir (-dir)
near_lantern = (length dir <* 10) &&* (time <* time_to)
movement = ifE near_lantern

(lantern_pos + rotatey (1,0,0) t)
pos

in point movement grey 1 <+> kill (t >* 50)

firespark :: Vector -> Point -> Command
firespark init_dir init_pos =
obj $ \t ->
rand $ \x ->
let pos = snapshot init_pos + integrate t (snapshot init_dir)

col = lerp (clamp (x+sin(time*10))) red yellow
in point pos col 2 (t >* 5)

circle-emit :: Point -> Scalar -> Scalar -> (Point -> Scalar) ->
Command

circle-emit init_pos r qty obj =
obj $ \t ->
nrand $ \x ->
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let pos = snapshot $ r*(normalize x)+swarm_pos
in emit 1 qty (obj pos) <+> kill true

swarm =
let pos = extPoint "start_pos"

lantern = extPoint "lantern"
emit = circle-emit pos 2 50 (mosquito lantern)

in trigged "swarm" emit

fireball =
let pos = extPoint "start_pos"

dir = extVector "direction"
emit = circle-emit pos 0.25 100 (firespark dir)

in trigged "fireball" emit

system = swarm <+> fireball <+> explosion

Our mosquitos should move towards the lantern and circle it for the first
30 seconds, then move away and die after 50 seconds. They have a bit of ran-
domness to their velocity, which should give them some of that erratic insectoid
flight pattern. Grey in color and a size of 1.

The fireballs are much simpler, and just fly along a given direction. They
do vary a bit with their color and size.

We use the same emitter for both systems, which will calculate points on
the surface of a sphere with given center and radius and apply these points to
the objects that it emits.

Finally, we just put these together so that we can export them into the same
class. So, compiling our system would give us the following interface:

class SwampParticles
{
public:

SwampParticles();

tracker* swarm(const Point &start_pos,
const Point &lantern,
callback *expired = 0);

tracker* fireball(const Point &start_pos,
const Vector &init_dir,
callback *expired = 0);

tracker* explosion(const Point &start_pos,
callback *expired = 0);

...
};

There, now we can spawn swarms of flies, they track the lantern. If the
lantern dies we can snapshot the system so that they still flie towards the lantern.
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Or, we could change the lantern position to the center of that swarm’s bounding
sphere, making the swarm gather on the spot for a while. Fireballs can be
thrown, and with some collision checking from the game engine, an explosion
can be triggered when a hit occurs, destroying the fireball but creating another
system in its place.

C.4 Beyond particle systems

If the external variables represent key states, we can make a small game in
this language. Take as an example the old arcade hit Moonlander, where the
player was set to steer a rocket and try to land softly on a landing pad, avoiding
surrounding mountains and conserving as much fuel as possible.

Since we can integrate values, we can keep track of fuel and calculate thrust
effect. Checking if the position is near the landing pod and the angle of the ship
is straight, we can decide wether a landing is succesful or not. The mountains
can be generated with a few randomized sine-waves and the landing pod can
be put at the minumum position. At a few of the maxima we can have lava
or smoke coming out (no, the moon does not have active volcanoes, but games
aren’t meant to be realistic, they are meant to have fancy graphics :)


